Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 641
Filtrar
1.
Mol Neurobiol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613648

RESUMEN

Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.

2.
Front Cell Infect Microbiol ; 14: 1370999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660489

RESUMEN

Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.


Asunto(s)
Diabetes Mellitus , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Trasplante de Microbiota Fecal/métodos , Humanos , Diabetes Mellitus/terapia , Diabetes Mellitus/microbiología , Disbiosis/terapia , Animales , Heces/microbiología
3.
World J Gastroenterol ; 30(12): 1644-1650, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38617734

RESUMEN

In this editorial, we comment on the article by Marangoni et al, published in the recent issue of the World Journal of Gastroenterology 2023; 29: 5618-5629, about "Diet as an epigenetic factor in inflammatory bowel disease". The authors emphasized the role of diet, especially the interaction with genetics, in promoting the inflammatory process in inflammatory bowel disease (IBD) patients, focusing on DNA methylation, histone modifications, and the influence of microRNAs. In this editorial, we explore the interaction between genetics, gut microbiota, and diet, in an only way. Furthermore, we provided dietary recommendations for patients with IBD. The Western diet, characterized by a low fiber content and deficiency the micronutrients, impacts short-chain fatty acids production and may be related to the pathogenesis of IBD. On the other hand, the consumption of the Mediterranean diet and dietary fibers are associated with reduced risk of IBD flares, particularly in Crohn's disease (CD) patients. According to the dietary guidance from the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD), the regular consumption of fruits and vegetables while reducing the consumption of saturated, trans, dairy fat, additives, processed foods rich in maltodextrins, and artificial sweeteners containing sucralose or saccharine is recommended to CD patients. For patients with ulcerative colitis, the IOIBD recommends the increased intake of natural sources of omega-3 fatty acids and follows the same restrictive recommendations aimed at CD patients, with the possible inclusion of red meats. In conclusion, IBD is a complex and heterogeneous disease, and future studies are needed to elucidate the influence of epigenetics on diet and microbiota in IBD patients.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Dieta Mediterránea , Enfermedades Inflamatorias del Intestino , MicroARNs , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedad de Crohn/genética
5.
Front Immunol ; 15: 1352744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605969

RESUMEN

Like other infections, a SARS-CoV-2 infection can also trigger Post-Acute Infection Syndromes (PAIS), which often progress into myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS, characterized by post-exercise malaise (PEM), is a severe multisystemic disease for which specific diagnostic markers or therapeutic concepts have not been established. Despite numerous indications of post-infectious neurological, immunological, endocrinal, and metabolic deviations, the exact causes and pathophysiology remain unclear. To date, there is a paucity of data, that changes in the composition and function of the gastrointestinal microbiota have emerged as a potential influencing variable associated with immunological and inflammatory pathways, shifts in ME/CFS. It is postulated that this dysbiosis may lead to intestinal barrier dysfunction, translocation of microbial components with increased oxidative stress, and the development or progression of ME/CFS. In this review, we detailed discuss the findings regarding alterations in the gastrointestinal microbiota and its microbial mediators in ME/CFS. When viewed critically, there is currently no evidence indicating causality between changes in the microbiota and the development of ME/CFS. Most studies describe associations within poorly defined patient populations, often combining various clinical presentations, such as irritable bowel syndrome and fatigue associated with ME/CFS. Nevertheless, drawing on analogies with other gastrointestinal diseases, there is potential to develop strategies aimed at modulating the gut microbiota and/or its metabolites as potential treatments for ME/CFS and other PAIS. These strategies should be further investigated in clinical trials.


Asunto(s)
Síndrome de Fatiga Crónica , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Humanos , Síndrome de Fatiga Crónica/etiología , Enfermedades Gastrointestinales/complicaciones , Estrés Oxidativo , Disbiosis/complicaciones
6.
Eur J Clin Invest ; : e14228, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655910

RESUMEN

BACKGROUND: Gut microbiota and its by-products are increasingly recognized as having a decisive role in cardiovascular diseases. The aim is to study the relationship between gut microbiota and early vascular ageing (EVA). METHODS: A cross-sectional study was developed in Salamanca (Spain) in which 180 subjects aged 45-74 years were recruited. EVA was defined by the presence of at least one of the following: carotid-femoral pulse wave velocity (cf-PWV), cardio-ankle vascular index (CAVI) or brachial-ankle pulse wave velocity (ba-PWV) above the 90th percentile of the reference population. All other cases were considered normal vascular ageing (NVA). MEASUREMENTS: cf-PWV was measured by SphygmoCor® System; CAVI and ba-PWV were determined by Vasera 2000® device. Gut microbiome composition in faecal samples was determined by 16S rRNA Illumina sequencing. RESULTS: Mean age was 64.4 ± 6.9 in EVA group and 60.4 ± 7.6 years in NVA (p < .01). Women in EVA group were 41% and 53% in NVA. There were no differences in the overall composition of gut microbiota between the two groups when evaluating Firmicutes/Bacteriodetes ratio, alfa diversity (Shannon Index) and beta diversity (Bray-Curtis). Bilophila, Faecalibacterium sp.UBA1819 and Phocea, are increased in EVA group. While Cedecea, Lactococcus, Pseudomonas, Succiniclasticum and Dielma exist in lower abundance. In logistic regression analysis, Bilophila (OR: 1.71, 95% CI: 1.12-2.6, p = .013) remained significant. CONCLUSIONS: In the studied Spanish population, early vascular ageing is positively associated with gut microbiota abundance of the genus Bilophila. No relationship was found between phyla abundance and measures of diversity.

7.
Microbiome ; 12(1): 71, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589975

RESUMEN

BACKGROUND: Childhood undernutrition is a major global health challenge with devastating lifelong consequences. Linear growth stunting due to undernutrition has been linked to poor health outcomes, and mothers who experience growth stunting in childhood are more likely to give birth to stunted children later in life. Based on these findings, we hypothesized that intergenerational colonization of mice with microbiota from human donors with undernutrition may recapitulate certain immune and growth changes observed in this disorder. RESULTS: To test this hypothesis, we developed a gnotobiotic murine model of undernutrition using microbiota from human infants with healthy or stunted growth trajectories. Intergenerational colonization with microbiota derived from children with growth stunting lead to less linear growth and the development of immune features of undernutrition and enteropathy, including intestinal villus blunting, lower liver IGF-1 and accumulation of intraepithelial lymphocytes and plasma cells in the small intestine. In contrast, colonization after weaning lead to fewer host phenotypic changes between these distinct microbial communities. CONCLUSIONS: These results are broadly consistent with previous findings demonstrating that exposure of the immune system to microbial products during the weaning phase is a critical determinant of later life immune function. Overall, our results suggest intergenerational colonization with human microbiota samples is a useful approach with which to investigate microbiota-dependent changes in growth and immunity in early life. Murine models that capture the intergenerational and multifactorial nature of undernutrition are critical to understanding the underlying biology of this disorder. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Microbiota , Animales , Humanos , Lactante , Ratones , Trastornos del Crecimiento , Intestino Delgado
8.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589690

RESUMEN

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.

9.
Front Cell Dev Biol ; 12: 1365624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590777

RESUMEN

The gut microbiome is implicated in the pathogenesis of polycystic ovary syndrome (PCOS), and prenatal androgen exposure is involved in the development of PCOS in later life. Our previous study of a mouse model of PCOS induced by prenatal dihydrotestosterone (DHT) exposure showed that the reproductive phenotype of PCOS appears from puberty, followed by the appearance of the metabolic phenotype after young adulthood, while changes in the gut microbiota was already apparent before puberty. To determine whether the prenatal or postnatal nurturing environment primarily contributes to these changes that characterize prenatally androgenized (PNA) offspring, we used a cross-fostering model to evaluate the effects of changes in the postnatal early-life environment of PNA offspring on the development of PCOS-like phenotypes and alterations in the gut microbiota in later life. Female PNA offspring fostered by normal dams (exposed to an abnormal prenatal environment only, fostered PNA) exhibited less marked PCOS-like phenotypes than PNA offspring, especially with respect to the metabolic phenotype. The gut microbiota of the fostered PNA offspring was similar to that of controls before adolescence, but differences between the fostered PNA and control groups became apparent after young adulthood. In conclusion, both prenatal androgen exposure and the postnatal early-life environment created by the DHT injection of mothers contribute to the development of PCOS-like phenotypes and the alterations in the gut microbiota that characterize PNA offspring. Thus, both the pre- and postnatal environments represent targets for the prevention of PCOS and the associated alteration in the gut microbiota in later life.

10.
J Neurogastroenterol Motil ; 30(2): 236-250, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38576373

RESUMEN

Background/Aims: A high-fat diet (HFD) causes dysbiosis and promotes inflammatory responses in the colon. This study aims to evaluate the effects of Clostridium butyricum on HFD-induced gut microbial changes in rats. Methods: Six-week-old Fischer-344 rats with both sexes were given a control or HFD during 8 weeks, and 1-to-100-fold diluted Clostridium butyricum were administered by gavage. Fecal microbiota analyses were conducted using 16S ribosomal RNA metagenomic sequencing and predictive functional profiling of microbial communities in metabolism. Results: A significant increase in Ruminococcaceae and Lachnospiraceae, which are butyric acid-producing bacterial families, was observed in the probiotics groups depending on sex. In contrast, Akkermansia muciniphila, which increased through a HFD regardless of sex, and decreased in the probiotics groups. A. muciniphila positively correlated with Claudin-1 expression in males (P < 0.001) and negatively correlated with the expression of Claudin-2 (P = 0.042), IL-1ß (P = 0.037), and IL-6 (P = 0.044) in females. In terms of functional analyses, a HFD decreased the relative abundances of M00131 (carbohydrate metabolism module), M00579, and M00608 (energy metabolism), and increased those of M00307 (carbohydrate metabolism), regardless of sex. However, these changes recovered especially in male C. butyricum groups. Furthermore, M00131, M00579, and M00608 showed a positive correlation and M00307 showed a negative correlation with the relative abundance of A. muciniphila (P < 0.001). Conclusion: The beneficial effects of C. butyricum on HFD-induced gut dysbiosis in young male rats originate from the functional profiles of carbohydrate and energy metabolism.

11.
J Nutr ; 154(4): 1200-1208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442855

RESUMEN

BACKGROUND: Human milk oligosaccharides have been shown to relate to the infant gut microbiome. However, the impact of other human milk components on infant gut bacterial colonization remains unexplored. OBJECTIVES: Our cross-sectional analysis aimed to investigate associations between human milk components (energy, macronutrients, free amino acids, inflammatory markers, and hormones) and infant gut microbiome diversity and composition (phylum, family, and genus) at 6 mo of age. METHODS: Human milk and infant stool samples were collected at 6 mo postpartum. The infant gut microbiome was profiled using 16S rRNA sequencing. Linear regression models were performed to examine associations, adjusting for pregravid BMI (kg/m2), delivery mode, duration of human milk feeding, and infant sex, with q < 0.2 considered significant. RESULTS: This analysis included a total of 54 mothers (100% exclusively feeding human milk) and infants (n = 28 male; 51.9%). Total energy in human milk showed a negative association with α-diversity measures (Chao1 and Shannon). Interleukin (IL)-8 in human milk was positively associated with Chao1 and observed operational taxonomic units. At the family level, human milk glutamine and serine levels showed a negative association with the abundance of Veillonellaceae, whereas isoleucine showed a positive association with Bacteroidaceae. Human milk IL-8 and IL-6 concentrations were positively associated with Bacteroidaceae abundance. IL-8 also had a positive relationship with Bifidobacteriaceae, whereas it had a negative relationship with Streptococcacea and Clostridiaceae. Human milk IL-8 was positively associated with the phylum Bacteroidetes, and negatively associated with Proteobacteria. At the genus level, human milk IL-8 exhibited a positive relationship with Bacteroides, whereas human milk isoleucine had a negative relationship with Bacteroides and Ruminococcus. Pregravid BMI and sex effects were observed. CONCLUSIONS: IL-8 in human milk could potentially prepare the infant's immune system to respond effectively to various microorganisms, potentially promoting the growth of beneficial gut bacteria and protecting against pathogens.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Lactante , Femenino , Humanos , Masculino , Leche Humana/química , Microbioma Gastrointestinal/genética , Interleucina-8/análisis , Interleucina-8/metabolismo , Estudios Transversales , ARN Ribosómico 16S/genética , Isoleucina/análisis , Isoleucina/metabolismo , Heces/microbiología , Lactancia Materna
13.
Circ Res ; 134(7): 842-854, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547246

RESUMEN

BACKGROUND: Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS: This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS: We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS: Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/microbiología , Dieta , Bacterias , Fibras de la Dieta
14.
Vet Sci ; 11(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535842

RESUMEN

Neonatal calf diarrhea is the leading cause of neonatal morbidity and mortality globally. The changes associated with the gastrointestinal microbiota in neonatal calves experiencing diarrhea and its etiology are not fully understood or completely defined in the literature. Several studies have demonstrated that the fecal microbiota of calves that experience diarrhea substantially deviates from that of healthy age-matched calves. However, one key question remains: whether the changes observed in the bacterial communities (also known as dysbiosis) are a predisposing factor for, or the consequence of, gastrointestinal inflammation caused by the pathogens associated with calf diarrhea. The first objective of this literature review is to present the current information regarding the changes in the fecal microbiota of diarrheic calves and the impact of the pathogens associated with diarrhea on fecal microbiota. Modulation of the gastrointestinal microbiota using pre- and probiotics, colostrum feeding, and fecal microbiota transplantation (FMT) has been used to treat and prevent gastrointestinal diseases in humans and dogs. Although information regarding the use of probiotics for the prevention of diarrhea is available in cattle, little information is available regarding the use of these strategies for treating calf diarrhea and the use of prebiotics or FMT to prevent diarrhea. The second objective of this literature review is to summarize the current knowledge regarding the impact of prebiotics, probiotics, synbiotics, colostrum feeding, and FMT for the treatment and prevention of calf diarrhea.

15.
Biomedicines ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540315

RESUMEN

The spectrum, intensity, and overlap of symptoms between functional gastrointestinal disorders (FGIDs) and other gastrointestinal disorders characterize patients with FGIDs, who are incredibly different in their backgrounds. An additional challenge with regard to the diagnosis of FGID and the applicability of a given treatment is the ongoing expansion of the risk factors believed to be connected to these disorders. Many cytokines and inflammatory cells have been found to cause the continuous existence of a low level of inflammation, which is thought to be a basic pathophysiological process. The idea of the gut-brain axis has been created to offer a basic framework for the complex interactions that occur between the nervous system and the intestinal functions, including the involvement of gut bacteria. In this review paper, we intend to promote the hypothesis that FGIDs should be seen through the perspective of the network of the neuroendocrine, immunological, metabolic, and microbiome pathways. This hypothesis arises from an increased understanding of chronic inflammation as a systemic disorder, that is omnipresent in chronic health conditions. A better understanding of inflammation's role in the pathogenesis of FGIDs can be achieved by clustering markers of inflammation with data indicating symptoms, comorbidities, and psycho-social factors. Finding subclasses among related entities of FGIDs may reduce patient heterogeneity and help clarify the pathophysiology of this disease to allow for better treatment.

16.
J Tradit Chin Med ; 44(2): 303-314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504536

RESUMEN

OBJECTIVE: To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS: The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS: HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1ß, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS: In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.


Asunto(s)
Lesión Pulmonar Aguda , Microbioma Gastrointestinal , Ratas , Masculino , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Lipopolisacáridos/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Dominio Pirina , ARN Ribosómico 16S , Ratas Sprague-Dawley , Transducción de Señal , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Pulmón , Interleucina-6
17.
Gut Liver ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509701

RESUMEN

Background/Aims: While DNA methylation and gastric microbiome are each associated with gastric cancer (GC), their combined role in predicting GC remains unclear. This study investigated the potential of a combined DNA methylation and gastric microbiome signature to predict Helicobacter pylori-negative GC. Methods: In this case-control study, we conducted quantitative methylation-specific polymerase chain reaction to measure the methylation levels of DKK3, SFRP1, EMX1, NKX6-1, MIR124-3, and TWIST1 in the gastric mucosa from 75 H. pylori-negative patients, including chronic gastritis (CG), intestinal metaplasia (IM), and GC. A combined analysis of DNA methylation and gastric microbiome, using 16S rRNA gene sequencing, was performed in 30 of 75 patients. Results: The methylation levels of DKK3, SFRP1, EMX1, MIR124-3, and TWIST1 were significantly higher in patients with GC than in controls (all q<0.05). MIR124-3 and TWIST1 methylation levels were higher in patients with IM than those with CG and also in those with GC than in those with IM (all q<0.05). A higher methylation level of TWIST1 was an independent predictor for H. pylori-negative GC after adjusting for age, sex, and atrophy (odds ratio [OR], 15.15; 95% confidence interval [CI], 1.58 to 145.46; p=0.018). The combination of TWIST1 methylation and GC microbiome index (a microbiome marker) was significantly associated with H. pylori-negative GC after adjusting for age, sex, and atrophy (OR, 50.00; 95% CI, 1.69 to 1,476; p=0.024). Conclusions: The combination of TWIST1 methylation and GC microbiome index may offer potential as a biomarker for predicting H. pylori-negative GC.

18.
Biol Res Nurs ; : 10998004241242102, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528812

RESUMEN

Problem: Neonatal abstinence syndrome (NAS) affecting neonates with fetal exposure to opioids, is defined by expression and severity of symptoms. The pathophysiology behind symptoms variability is lacking. The study aims were to examine (a) differences in gut microbiota of neonates with and without NAS, (b) the relationships between gut microbiota and symptom expression and NAS severity, and (c) the changes in the neonate gut microbiota diversity during the course of NAS treatment. Methods: A cross-sectional observational design was used to examine differences in microbiota and a longitudinal, repeated measures approach was used to determine relationships between gut microbiota and NAS symptoms. Symptom data were collected using the Finnegan Neonatal Abstinence Scoring Tool and the Neonatal Pain Agitation and Sedation Scale. Stool samples were collected for microbiome analyses with 16S rRNA microbiome sequencing. Results: Differences in alpha and beta diversity between neonates with and without NAS were seen. Relative abundance results revealed 18 taxa were different in neonates with NAS compared to neonates without NAS. No differences were found in alpha or beta diversity in neonates with NAS between enrollment and hospital discharge. There was increased abundance of Escherichia-Shigella and Bacteriodes genera related to higher symptom scores. Discussion: Differences in alpha and beta diversity between neonates with and without NAS may be due to differences in birth mode and type of feeding. The findings of specific increased bacteria related to increased symptoms in the neonates with NAS may also be influenced by birth mode and type of feeding.

20.
Indian J Gastroenterol ; 43(1): 129-144, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38334893

RESUMEN

Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.


Asunto(s)
Infecciones por Clostridium , Enfermedades Inflamatorias del Intestino , Humanos , Trasplante de Microbiota Fecal/métodos , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/complicaciones , Infecciones por Clostridium/terapia , Infecciones por Clostridium/complicaciones , Estudios Longitudinales , Inflamación/complicaciones , Disbiosis/terapia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...